== + K C T =10 (23)

where kz is the constant of separation to be determined. Equation (22) is
Bessel's equation and its solution is
R(r) = B

jl (kr) + B (kr) (24)

1 2”1
where jl(kr) and vy, (kr) the spherical Bessel functions of the first and second
kind of the first order [11]. Since R(r) is finite for r = 0, B, must be zero.
Combining equation (24) and the boundary condition of equation (19), we obtain
a transcendental equation for k, the constant of separation

tan(ka) = (ka)/[1 - ¢ " (ka)?/(4c, )] (25)

where C (ufﬂ}lfz is the wvelocity of shear wave propagation. The solution
of equa%iﬂn (25) is an infinite sequence of eigenvalues, km; each corresponds
to a characteristic mode of vibration of the spherical head. Moreover, since
equation (23) is harmonic in time, a general solution for ut(r,t} may be
written as

[+ 4]
ut{r,t) = I Amjl{kmr} Cos w t (26)
m=0
where
w = kmCl (27)

and m is the angular frequency of vibration of the sphere. We evaluate the
constants A_ by using the initial conditions in equation (14) to obtain

a 3
Am = - uQ{ W f’ r j (k T)Jlf““‘jd + 31:%5-( 3 2} S r J (k r)dr}
2 205 e £312 4 i = {1,3,5... 5
1§ oG o, ~ Vg0 b (28)

The integrals in equation (28) may be evaluated [17] to give

2 4 1
. 2 ] 33421 k a
[Jlikma)] - ja{kmﬂ)jszm&) m

A =.T.Lla(N—Tr}l -1

m Jz(kma}

. 1 i . T
- k aj,(k a) . N = iy (29)
m m {kma}2 _ o2 § { 0,2 B

where j,(k a) is the spherical Bessel function of the first kind and second
order. "The displacement response of the sphere to a step input of microwave
energy is now given by introducing equation (29) into equation (26) and then
combining equation (20) and (26) in equation (15). We have
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